Engaging student pages accompany each lesson within \textit{ORIGO Stepping Stones}. In the Student Journal for this year level, there are two pages for each lesson.
For more information on program content for *ORIGO Stepping Stones* Year 3 visit origoeducation.com/stepping-stones.

SENIOR AUTHORS
Rosemary Irons
James Burnett

CONTRIBUTING AUTHORS
Debi DePaul
Peter Stowasser
Allan Turton

PROGRAM EDITORS
Beth Lewis
Donna Richards
Stacey Lawson
3.1 Revising Multiplication Concepts

1 packed 3 stacks of boxes. There were 8 boxes in each stack. How many boxes did I pack?

Use cubes to help work out the answer.

Write an addition sentence to match your cubes.

____ + ____ + ____ = ____

How does your addition sentence relate to the story problem?

Write a multiplication sentence to match your cubes.

____ × ____ = ____

How does your multiplication sentence relate to the story problem?

Step Up

1. Draw a picture to help solve each problem. Then write the matching multiplication sentence.

a. Each container holds 3 tennis balls. How many tennis balls will fill 4 containers?

____ × ____ = ____ balls

b. Each car needs 5 tyres. How many tyres are needed for 4 cars?

____ × ____ = ____ tyres
2. Complete these. Show your thinking.

a. Balloons cost 5 cents. How much would you pay for 9 balloons?

\[\underline{\text{____}} \times \underline{\text{____}} = \underline{\text{_____}} \text{ cents} \]

b. How many stamps are on a sheet that has 5 rows of 6 stamps?

\[\underline{\text{____}} \times \underline{\text{____}} = \underline{\text{_____}} \text{ stamps} \]

c. Lara had 4 bags. She placed 8 oranges in each. How many oranges did she have in total?

\[\underline{\text{____}} \times \underline{\text{____}} = \underline{\text{_____}} \text{ oranges} \]

d. William cut 5 lengths of rope. Each piece was 4 metres long. What was the total length of rope?

\[\underline{\text{____}} \times \underline{\text{____}} = \underline{\text{_____}} \text{ metres} \]

Step Ahead

a. Complete this table.

<table>
<thead>
<tr>
<th>Number of feet</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of toes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. How did you work out the number of toes on 8 feet?

3.2 Revising the Array Model of Multiplication

An array is an arrangement of objects in rows, with the same number of objects in each row. How would you describe the array on the right?

Look at the array on the left.
How is it different from the array above?
How is it the same?
What multiplication sentences can you write about each array? What do you notice?

3 × 4 = 12 is a multiplication fact.
4 × 3 = 12 is its turnaround fact.

Step Up

1. Write the missing numbers to match the pictures.

 a. 2 rows of 3 bananas is _______
 2 × 3 = _______

 b. 3 rows of 5 chestnuts is _______
 3 × 5 = _______

2. Colour the picture to match the story. Then complete the equation.

 a. 3 rows of apples
 6 apples in each row
 ______ × ______ = _______

 b. 2 rows of carrots
 3 carrots in each row
 ______ × ______ = _______
3. Colour the picture to match the story. Then write the multiplication equation that matches and its turnaround fact.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>5 strawberries in each row</td>
<td>3 rows of strawberries</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b.	4 cherries in each row	2 rows of cherries		

4. Colour the ■ beside the matching turnaround fact.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>2 × 8 = 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b.	4 × 3 = 12			

c.	6 × 4 = 24			

d.	7 × 3 = 21			

Step Ahead

Write a story to match this equation.

6 × 3 = 18
3.3 Introducing the Tens Multiplication Facts

Six students held up their hands in front of the class.

How many fingers are there in total? How can you work it out quickly?

What multiplication sentence could you write to describe the number of fingers?

\[\square \times \square = \square \]

Step Up

I. Work out the total. Write the matching equation.

a.

\[\square \times \square = \square \text{ fingers} \]

b.

\[\square \times \square = \square \text{ shoes} \]

c.

\[\square \times \square = \square \text{ bananas} \]

d.

\[\square \times \square = \square \text{ c} \]
2. Write two facts to match each array.

a.

\[
\begin{array}{c}
\times \\
\times
\end{array}
\]

b.

\[
\begin{array}{c}
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \\
= \

Step Ahead

Anna has five 10-cent coins. Victor has ten 5-cent coins. Does Victor have more money than Anna? Explain your answer.
3.4 Introducing the Fives Multiplication Facts

Look at this array and the equations. How would you work out the products?

How is this array different from the one above? How could you work out the products in these equations?

I halved the product in the tens fact. 10 fours is 40 so 5 fours is half of that.

I counted in steps of 5.

Use a halving strategy to work out 6×5. You can draw an array to help.

Step Up I. Complete the tens fact. Colour half the array and then complete the two fives facts to match.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a.</th>
<th>b.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3 \times 10 = \underline{\hspace{2cm}}$</td>
<td>$2 \times 10 = \underline{\hspace{2cm}}$</td>
</tr>
</tbody>
</table>
| $\begin{array}{c}
\text{3 \times 5 = } \\
\text{5 \times 3 =}
\end{array}$ | $\begin{array}{c}
\text{2 \times 5 = } \\
\text{5 \times 2 =}
\end{array}$ |

© ORIGO Education.
2. Write the product for the tens fact. Colour half the array and then write the two fives facts to match.

a. $7 \times 10 = \underline{\hspace{2cm}}$

b. $6 \times 10 = \underline{\hspace{2cm}}$

c. $9 \times 10 = \underline{\hspace{2cm}}$

d. $8 \times 10 = \underline{\hspace{2cm}}$

Step Ahead

a. Write two tens facts to match this picture.

\[\underline{\hspace{2cm}} \times \underline{\hspace{2cm}} = \underline{\hspace{2cm}} \quad \underline{\hspace{2cm}} \times \underline{\hspace{2cm}} = \underline{\hspace{2cm}} \]

b. Cross out one hand on each card. Write two multiplication facts to match the new picture.

\[\underline{\hspace{2cm}} \times \underline{\hspace{2cm}} = \underline{\hspace{2cm}} \quad \underline{\hspace{2cm}} \times \underline{\hspace{2cm}} = \underline{\hspace{2cm}} \]

c. How did you work out what facts to write?

\[\underline{\hspace{2cm}} \]
3.5 Reinforcing the Tens and Fives Multiplication Facts

How can you use the tens fact on the opened card to help work out the number of dots showing on the closed card.

What other methods could you use to work out the product of 6 × 5?

I would skip count by fives: 5, 10, 15, 20, 25, 30.

Step Up

1. Work out the total and write the matching number sentence.

a.

b.

_____ × _____ = _______ C

_____ × _____ = _______ C
2. Draw coins to match the price tag. Then write a matching number sentence.

a.

\[
\frac{\text{\$25c}}{} \times = \text{c}
\]

b.

\[
\frac{\text{\$40c}}{} \times = \text{c}
\]

3. Write the missing number in each number sentence.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>6 \times 10 = & b.</td>
<td>4 \times = 20 & c.</td>
<td> \times 5 = 35 & d.</td>
<td>10 \times = 40</td>
</tr>
<tr>
<td>e.</td>
<td>80 = \times 8 & f.</td>
<td> \times 5 = 15 & g.</td>
<td>5 \times = 45 & h.</td>
<td>30 = \times 6</td>
</tr>
</tbody>
</table>

4. Write a number sentence to match each story.

a. David has a set of 10 toy cars. The total length of all the cars laid end to end is 70 cm. Each car is 7 cm long.

\[
 \times =
\]

b. Kayla had 30 stickers to pack into bags. She put 5 stickers in each bag. When she finished she had 6 bags of stickers.

\[
 \times =
\]

Step Ahead

These **IN** numbers are multiplied by **10** and then halved before they come **OUT**. Write the missing numbers.
3.6 Introducing the Twos Multiplication Facts

What do you see in this picture?

I see double 6.

What multiplication number sentences could you write for this picture of eggs?

Write two related equations to match.

How did you work out the product?

What are some other problems you could solve by doubling?

I have used doubling with addition.

Step Up 1. Write a twos number fact and its turnaround for each picture.

a.

\[_ \times _ = _ \]

\[_ \times _ = _ \]

b.

\[_ \times _ = _ \]

\[_ \times _ = _ \]

c.

\[_ \times _ = _ \]

\[_ \times _ = _ \]
2. Write the twos fact that matches each array. Then write the turnaround fact.

a.

\[
\begin{array}{c}
\text{IN} \\
7 \\
4 \\
10 \\
\text{OUT} \\
\end{array}
\]

b.

\[
\begin{array}{c}
\text{IN} \\
5 \\
9 \\
\text{OUT} \\
24 \\
\end{array}
\]

c.

\[
\begin{array}{c}
\text{IN} \\
22 \\
\text{OUT} \\
\end{array}
\]

3. Draw a line to match each equation with its turnaround below. Then complete the equations.

\[
\begin{align*}
2 \times 9 &= \underline{} \\
12 \times 2 &= \underline{} \\
11 \times 2 &= \underline{} \\
2 \times 14 &= \underline{} \\
2 \times 12 &= \underline{} \\
2 \times 11 &= \underline{} \\
9 \times 2 &= \underline{} \\
14 \times 2 &= \underline{} \\
\end{align*}
\]

Step Ahead
Write the missing numbers.

a.

\[
\begin{array}{c}
\text{IN} \\
7 \\
4 \\
10 \\
\text{OUT} \\
\end{array}
\]

b.

\[
\begin{array}{c}
\text{IN} \\
5 \\
9 \\
\times 2 \\
\text{OUT} \\
24 \\
6 \\
\end{array}
\]
3.7 Reinforcing the Twos Multiplication Facts

What pictures could you draw to match this fact?

2 \times 7 = 14

Anton drew rows of apples. How does his picture match the fact?

Emma drew bags of marbles. How does her picture match the fact?

How could you represent the same fact on a number line?

You could draw 2 jumps of 7 on a number line.

Step Up

I. Draw a picture to match each word story. Then complete the equation.

<table>
<thead>
<tr>
<th>a. 5 oranges in each bag</th>
<th>b. 3 rows of strawberries</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 bags of oranges</td>
<td>2 strawberries in each row</td>
</tr>
</tbody>
</table>

\[
\underline{\text{a.}} \quad 5 \times \underline{\text{2}} = \underline{10} \\
\underline{\text{b.}} \quad \underline{3} \times \underline{2} = \underline{6}
\]
2. Complete the equation. Then draw jumps on the number line to show your thinking.

a. \(2 \times 6 = \) __________
 \[\begin{array}{c}
 0 \\
 \end{array}\]

b. \(4 \times 2 = \) __________
 \[\begin{array}{c}
 0 \\
 \end{array}\]

c. \(2 \times 5 = \) __________
 \[\begin{array}{c}
 0 \\
 \end{array}\]

d. \(9 \times 2 = \) __________
 \[\begin{array}{c}
 0 \\
 \end{array}\]

3. Write the missing number in each equation.

a. \(8 \times 2 = \) __________
 b. __________ \(\times 2 = 10\)
 c. \(10 \times \) __________ \(= 20\)
 d. __________ \(\times 3 = 6\)

 e. \(2 \times \) __________ \(= 20\)
 f. \(14 = \) __________ \(\times 2\)
 g. \(2 \times \) __________ \(= 8\)
 h. \(12 = 6 \times \) __________

Step Ahead
Write a multiplication sentence you could use to solve each problem.

a. There are 9 boxes of shoes. Each box holds 2 shoes. How many shoes in total?
 \[\text{____} \times \text{____} = \text{____}\]

b. Brady cuts a piece of rope into 2-m lengths. The rope is 14 metres long. How many lengths can he cut?
 \[\text{____} \times \text{____} = \text{____}\]
This recipe makes one cake.
How many bananas would you need to make two cakes?

That’s 6 bananas because double 3 is 6.

How could you work out the number of bananas needed to make four cakes?

What multiplication sentence could you write?

You would need 12 bananas to make four cakes because double 6 is 12.

How many large walnuts will you need to make four cakes?

Step Up

1. This recipe makes one large bowl of fruit jelly. Write the answers.

 a. How many sliced peaches are needed to make four bowls of fruit jelly? ____

 b. Emily bought 20 strawberries. How many bowls of fruit jelly could she make? ____

 c. How many cans of pineapple are needed to make four bowls of fruit jelly? ____

 d. William has 16 bananas. How many bowls of fruit jelly could he make? ____

 Fruit Jelly
 1. packet of gelatin
 2. sliced peaches
 10. strawberries
 1. can of pineapple
 4. bananas
2. Write a number sentence you could use to solve each word problem.

 a. 6 eggs are placed in each carton. There are 4 cartons. What is the total number of eggs?

 __

 b. Cans are stacked in 2 equal rows. There are 7 cans in each row. What is the total number of cans?

 __

 c. 9 cars are parked end to end. Each car is 4 metres long. What is the total length of the cars?

 __

 d. Daniel saves $2 each week. What is the total amount of money that he could save in 8 weeks?

 __

3. Solve each problem. Show your thinking.

 a. Mia bought 2 t-shirts for $9 each. She then bought 1 pair of socks for $4. What was the total cost?

 $ _______

 b. There are 4 bags of counters. In each bag there are 3 red counters and 7 blue counters. How many counters are there in total?

 _______ counters

Step Ahead

Look at this tile pattern. Write in words how you could work out the total number of blue triangles without counting one at a time.

__

__

__

__
Look at this clock.
What do the numbers mean when the **hour** hand is pointing at them?
What do the numbers mean when the **minute** hand is pointing at them?
What time is shown on this clock? How do you know?

20 minutes past 7 or seven twenty.

What do you notice about the minute hand on this clock?

The minute hand is pointing between 4 and 5.
The time must be between seven twenty and seven twenty-five.

What do the marks between the numerals on the clock mean?
How many minutes past the hour is the clock showing?
What time is shown on the clock?
Step Up

I. Write each time.

a. ________ minutes past ________

b. ________ minutes past ________

c. ________ minutes past ________

d. ________ minutes past ________

e. ________ minutes past ________

f. ________ minutes past ________

2. Draw hands on the clock to match the time.

a. 23 minutes past 9

b. 45 minutes past 3

c. 4 minutes past 7

Step Ahead

Grace needs to place a piece of pie in the oven for 10 minutes.

This clock shows the time that she put the pie in the oven. At what time should she take the pie out?

3.10 Relating Analog and Digital Times

What time is showing on the analog clock? What are some different ways to say the time?

- 32 minutes past 10.
- Ten thirty-two.

Write numbers on the digital clock to show the same time. What do the numbers on the left side of the colon tell you? What do the numbers on the right side of the colon tell you?

Step Up

1. Draw lines to connect clocks that show the same time.
2. Read the analog clock. Then write the same time on the digital clock.

 a.
 b.
 c.

3. Read the digital clock. Then draw hands on the analog clock to show the same time.

 a.
 b.
 c.

Step Ahead
Draw hands on the analog clock to continue the pattern.
3.11 Relating Times Past and To the Hour

How can you work out the number of minutes past the hour shown on this clock?

How do you read the time past the hour?

How can you work out the number of minutes to the next hour?

Write numbers to complete these two ways of reading this time.

——— minutes past ——— o’clock ——— minutes to ——— o’clock

How many minutes past the hour does this digital clock show?

How can you work out the number of minutes to the next hour?

Is there another way you could work it out?

Complete these to show two ways of reading the digital time above.

——— minutes past ——— o’clock

——— minutes to ——— o’clock

Step Up 1.

Write the number of minutes past the hour and the number of minutes to the next hour. Then write the time on the digital clock.

a. ——— minutes past ———

——— minutes to ———

b. ——— minutes past ———

——— minutes to ———
2. Complete these to show matching times.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>minutes past</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>minutes to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>minutes past</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>minutes to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>minutes past</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>minutes to</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Complete these.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>minutes to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>minutes to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>minutes to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>minutes to</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step Ahead

Loop the times that you could easily read as minutes to the hour.

- 4:45
- 11:03
3.12 Reading Times to the Minute in Different Ways

Think about all the different ways you could read this time.

45 minutes after 2.
15 minutes before 3.
Two forty-five.
A quarter to 3.

What other ways do you know?

What are all the different ways you could read these times?

Step Up

I. Write four different ways you could read each time.

a.

b.
2. Draw lines to connect times to the correct clock.

- five forty-five
- 15 minutes past 7
- 15 minutes to 6
- 8:50
- nine fifty-one
- 9:30
- quarter past 7
- 7:15
- 30 minutes past 9
- 9 minutes till 10
- quarter to 6
- eight fifty
- 45 minutes past 5
- 5:45
- 10 minutes to 9
- seven fifteen
- nine thirty
- half past nine
- 51 minutes past 9
- 9:51

Step Ahead

Use the clock to help you solve the word problem.

Three friends arrive at school at different times. Nina arrives at seven fifty. Dixon is dropped off at a quarter to eight. Lela gets there at eight fifteen.

Write the names of the three friends in order from who arrives at school first to who arrives last.

first second third